环境安装流程
Ubuntu 20.04 安装
下载镜像:ubuntu-20.04.6-desktop-amd64.iso
下载 rufus: 官网地址
制作USB启动盘
开机按 Delete 键进入 BIOS
启动项将首选项改为 USB 启动盘
重新启动进入安装程序
选择 English
有线网账号密码:psd
选择 Mininal installation
选择 Erase disk and install Ubuntu
设置用户名密码是:psd
安装配置 ssh
sudo apt-get updatesudo apt install openssh-serversudo apt-get install vimsudo vim /etc/ssh/sshd_config
端口号修改为23321后保存,继续执行
sudo systemctl restart sshdsudo ufw allow 23321
关闭自动锁屏:
点击右上角 Settings
点击 Privacy
点击 Screen Lock
关闭自动锁屏
CUDA 11.3 & cuDNN 安装
查看当前驱动dpkg -l | grep nvidia
卸载原本的驱动并清理链接 sudo apt-get purge nvidia*sudo apt autoremove
查询可用驱动 ubuntu-drivers devices
自动安装推荐的驱动 sudo ubuntu-drivers autoinstall
重启,然后验证驱动是否安装成功 sudo rebootnvidia-smi
下载并运行 CUDA 11.3.1 安装程序 cd ~wget https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.19.01_linux.runsudo apt install gccsudo sh cuda_11.3.1_465.19.01_linux.run
只勾选 CUDA Toolkit 11.3,然后安装
添加环境变量
sudo vim /etc/profile
export CUDA_HOME=/usr/local/cuda-11.3export PATH=$PATH:$CUDA_HOME/binexport LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/cuda-11.3/lib64
下载并安装 cuDNN 8.9.2.26 cd ~wget https://developer.nvidia.com/downloads/compute/cudnn/secure/8.9.2/local_installers/11.x/cudnn-linux-x86_64-8.9.2.26_cuda11-archive.tar.xztar -xvf cudnn-linux-x86_64-8.9.2.26_cuda11-archive.tar.xzcd cudnn-linux-x86_64-8.9.2.26_cuda11-archivesudo cp -r ./bin/* /usr/local/cuda-11.3/binsudo cp -r ./lib/* /usr/local/cuda-11.3/lib64
验证是否安装成功 source /etc/profilenvcc -Vnvidia-smi
docker & nvidia docker 安装
安装dockersudo apt-get install -y docker.iosudo systemctl start dockersudo systemctl enable dockerdocker version
安装 nvidia container toolkit sudo apt-get install curlwget https://download.docker.com/linux/ubuntu/gpgsudo apt-key add gpgvim installNvidiaContainer.sh
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)sudo curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -sudo curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
保存后执行
./installNvidiaContainer.shsudo apt-get update && sudo apt-get install -y nvidia-container-toolkitsudo systemctl restart dockerrm installNvidiaContainer.sh
创建多个新用户并添加docker用户组权限 cd ~vim addUsers.sh
for name in aifpga maomao yangyang lichangyvdo echo $name useradd -d /home/$name -m -s /bin/bash $name echo $name:$name | chpasswd usermod -aG docker ${name} # passwd --expire $name echo "$user add successfuly"done
保存后执行
./addUsers.sh
Vitis & Vivado & Vitis HLS 安装
下载 Vitis 包并进入目录
配置 dash(键盘选择 No)
sudo dpkg-reconfigure dash
安装依赖包并执行安装程序 sudo apt-get install ocl-icd-libopencl1sudo apt-get install opencl-headerssudo apt-get install ocl-icd-opencl-devsudo apt install libstdc++6sudo apt install libncurses5sudo apt-get install libtinfo5sudo chmod +x xsetupsudo ./xsetup
选择安装内容(需在本机使用图形界面操作)
选择 Vitis
选择以下内容(共210.68GB)
Vitis Unified Software Platform
Vitis Model Composer
DocNav
Install devices for Alveo and edge acceleration platforms
Install Devices for Kria soMs and starter Kits
Devices for Custom Platforms
Engineering Sample Devices for Custom Platforms
其他配置默认,然后等待安装完成
配置环境
sudo vim /etc/profile
source /tools/Xilinx/Vivado/2023.1/settings64.shsource /tools/Xilinx/Vitis/2023.1/settings64.shsource /tools/Xilinx/Vitis_HLS/2023.1/settings64.sh
安装 USB 驱动 cd /tools/Xilinx/Vivado/2023.1/data/xicom/cable_drivers/lin64/install_script/install_driverssudo ./install_drivers
验证是否安装成功 source /etc/profilevitisvivadovitis_hls
无论执行哪一个都有图形界面弹出
Vitis AI 安装
克隆 Vitis AI 仓库cd ~git clone https://github.com/Xilinx/Vitis-AI
构建基于 Pytorch-CUDA 的镜像 cd Vitis-AI/docker./docker_build.sh -t gpu -f pytorch
验证是否安装成功 cd .././docker_run.sh xilinx/vitis-ai-pytorch-gpu:3.5.0.001-a350fc104