您现在的位置是:首页 > 经典句子

【C++】手搓 list 容器

作者:亙句时间:2024-04-12 10:05:31分类:经典句子

简介  文章浏览阅读1.3k次,点赞52次,收藏56次。本文模拟实现了STL库的list

点击全文阅读

在这里插入图片描述
送给大家一句话:

若结局非你所愿,就在尘埃落定前奋力一搏。—— 《夏目友人帐》

手搓 list 容器

1 前言1.1 底层结构1.2 使用场景1.3 功能简介 2 框架搭建2.1 节点类2.2 list 类2.3 迭代器类 3 功能实现3.1 begin() 与 end()3.2 插入操作3.3 删除操作3.4 拷贝构造3.5 析构函数3.6 其他函数 4 总结Thanks♪(・ω・)ノ谢谢阅读!!!下一篇文章见!!!

1 前言

List是C++标准模板库(STL)中的一个成员,其本质为带头双向循环链表。不同于连续的、紧密排列的数组容器Vector,List容器的内部是由双向链表构成的,使得它在插入和删除操作上,就如同行云流水一般顺畅,不需移动其它元素。

1.1 底层结构

List容器的底层结构,是一个经典的带头双向循环链表。每个节点包含:

数据指向前一个节点的指针指向后一个节点的指针。

这种结构赋予了List灵动的特性:它能够轻松地在任意位置增加或移除元素,而这种操作几乎是与容器大小无关的,体现了时间复杂度上的优势。但这种优势的代价是,与数组相比,List在访问元素时的速度会较慢,因为它需要从头开始遍历。这也决定了list的更适合频繁插入的动态数据。
来看STL源码中的节点结构:

template <class T>struct __list_node {  typedef void* void_pointer;  void_pointer next;  void_pointer prev;  T data;};

1.2 使用场景

List最适合的场景是那些需要频繁进行插入和删除操作的场合。
例如,如果你正在管理一个动态变化的列表,如任务调度、人员排队等场景,List的特性将大放异彩。但是如果你的应用场景更多地需要随机访问元素,那么向量(Vector)或者数组可能是更佳的选择。因为List的顺序访问性能相比之下会显得有些力不从心。

所以如果需要频繁随机的访问数据,那么选择vector容器如果需要频繁插入删除数据,那么选择list容器排序不要选择list !!!其删除节点的过程就决定了其速度不会太快。

1.3 功能简介

功能简介我们可以参考STL官方库 :list文档介绍

插入与删除:List的插入和删除操作非常高效,它可以在任意位置快速地添加或移除元素,而不需要像连续内存容器那样进行大量元素的移动。多种构造:类都应该包含多种构造函数支持迭代器:迭代器是C++重要的特性,我们写的list 也一定要支持迭代器。

2 框架搭建

现在我们开始实现list 容器,首先先要思考一下框架结构:

首先我们需要一个节点结构体(类似源码中的节点)其次我们的list 类要带一个头结点,让我们更方便进行插入删除操作

基本就是这样,现在我们开始手搓

2.1 节点类

// 节点 结构体template<class T>struct ListNode{ListNode* _next;ListNode* _prev;T _data;ListNode(T x = T()) :_next(nullptr),_prev(nullptr),_data(x){}//ListNode(T x = T()) //{//_next = nullptr;//_prev = nullptr;//_data = x;//}~ListNode(){_next = nullptr;_prev = nullptr;}};

这里使用模版来适配更多的情景,然后基本的数据,前后指针都很简单。在编写一个构造函数,==构造函数使用初始化列表,并不是必须使用。析构函数避免野指针出现,将指针赋值为nullptr就可以了。

2.2 list 类

我们先进行简单的框架书写,构造函数需要创建一个头结点,因为我们要创建双向循环链表,所以头尾都要指向头结点本身。 _size赋初值。

template<class T>class list{public://设置适配的节点typedef ListNode<T> Node;//空初始化void empty_init(){_head = new Node;_head->_next = _head;_head->_prev = _head;_size = 0;}//构造函数list() :_head(nullptr){empty_init();}private:Node* _head;size_t _size;};

接下来我们来逐步完成功能书写,由于我们还没有进行迭代器的书写

2.3 迭代器类

我们思考一下这里能不能使用原生指针来完成迭代器的操作(++ == != --)当然是不能的,因为链表的物理地址并不是连续的,对原生指针的++或–操作是没有意义的,所以我们需要自行编写迭代器类,对原生指针进行封装,来满足我们特殊的++和–操作。

//这里的模板可以再次升级  先简单写一下template<class T>class ListIterator {public://重命名方便书写typedef ListNode<T> Node;typedef ListIterator<T> Self;Node* _node;ListIterator(Node* x ):_node(x){}//操作符重载 前置++ 与 后置++的区别是参数是否带(int)//++tSelf operator++(){_node = _node->_next;return *this;}//t++Self operator++(int){Self tmp(*this);//浅拷贝即可_node = _node->_next;return tmp;}//--tSelf operator--(){_node = _node->_prev;return *this;}//t--Self operator--(int){Self tmp(*this);//浅拷贝即可_node = _node->_prev;return tmp;}//判断是否相等 比较指针地址是否相同即可bool operator!=(const Self& it){return _node != it._node;}//判断是否相等 比较指针地址是否相同即可bool operator==(const Self& it){return _node == it._node;}// 解引用操作 *it 返回节点数据的引用 可以进行修改T& operator*(){return  _node->_data;}//因为指针才能使用-> 所以->要返回地址(指针)T* operator->()//编译器会进行省略->{return &_node->_data;}};

这样迭代器类就大致写好了,那么一般我们的迭代器应该还要支持const,不然我们传入一个不可修改的链表(const list l),就会反生报错,那么我们还要书写一份const版的迭代器。如果进行编写,那么是不是会有大部分与刚才我们书写的迭代器重复(++ -- == != 都是一样的),只有operator*()operator->()返回值不一致:

因为是常迭代器,使用场景是对const list<T> l进行操作,那么节点数据不可改变,所以不影响++ -- == != 这些操作,受影响的是operator*()operator->()返回值(该情况下链表本身是只读的,又因为不能将权限进行扩大,所以返回值应该也是只读的(const))。那这样就发现了不同常迭代器应该为 const T& operator*()const T* operator->() ,所以有没有一种办法可以简单解决呢,当然有了,我们设置一个新模版(带有三个参数),创建的时候就传入对应参数

我们将模版修改为这样,

 //reference 引用  pointer 指针template<class T , class Ref ,class Ptr>

对应返回值也改变:

 Ref operator*(){return  _node->_data;}Ptr operator->(){return &_node->_data;}

那么类实例化的时候传入对应参数就好了:

typedef ListIterator<T, T&, T*> iterator;typedef ListIterator<T, const T&, const T*> const_iterator;

这样就实现了迭代器的创建,是不是就非常简洁了呢

3 功能实现

3.1 begin() 与 end()

使用迭代器即可,注意end()是头结点,因为遍历过程中,全部遍历后会回到头结点,所以直接判断是否为头结点就能控制结束位置。

//普通迭代器typedef ListIterator<T, T&, T*> iterator;//常迭代器typedef ListIterator<T, const T&, const T*> const_iterator;iterator begin() { return _head->_next; }iterator end() { return _head; }const_iterator begin() const { return _head->_next; }const_iterator end() const { return _head; }

3.2 插入操作

插入操作我们很熟悉,步骤是创建一个新节点,然后通过改变指针指向来完成插入操作:
来看尾插操作,

void push_back(const T& x = T()){//创建新节点Node* node = new Node(x);//找尾Node* tail = _head->_prev;//进行插入node->_next = _head;node->_prev = tail;tail->_next = node;_head->_prev = node;//别忘记大小++_size++;}

任意位置插入,操作思路依然是对前后节点与新节点的指针指向进行操作,来完成插入。

void insert(iterator pos = begin(), T x = T()){//创建新节点Node* node = new Node(x);//前节点 后节点Node* prev = pos._node->_prev;Node* next = pos._node;//处理新节点node->_prev = prev;node->_next = next;//出现前后节点prev->_next = node;next->_prev = node;//别忘记大小++_size++;}

头插,直接干脆调用insert就可以了

void push_front(const T& x = T()){insert(begin(), x);}

3.3 删除操作

删除操作,同样是使用指针操作,来达到删除的效果。注意要对删除的节点进行释放空间操作(delete),不然会发生内存泄漏!!!

尾删void pop_back(){Node* tail = _head->_prev;Node* prev = tail->_prev;prev->_next = _head;_head->_prev = prev;delete tail;_size--;}//头删void pop_front(){Node* head = _head->_next;Node* next = head->_next;_head->_next = next;next->_prev = _head;delete head;_size--;}//任意位置删除iterator erase(iterator pos){Node* cur = pos._node;Node* prev = cur->_prev;Node* next = cur->_next;prev->_next = next;next->_prev = prev;delete cur;_size--;return iterator(next);}

需要注意的是,任意位置删除因为使用了迭代器,删除后会造成迭代器失效,所以需要更新迭代器,返回被删除节点的下一个节点的迭代器即可。

3.4 拷贝构造

拷贝构造直接将数据一个一个插入到该链表中即可:

list(const list<T>& l){empty_init();iterator it = l.begin();while (it != l.end()){push_back(*it);it++;}}

这样十分方便快捷!!!

3.5 析构函数

void clear(){//依次释放iterator it = begin();while (it != end()){it = erase(it);}}~list(){clear();//需要单独释放头结点空间delete _head;_head = nullptr;}

3.6 其他函数

返回大小:

size_t size() const { return _size; }

判断是否为空:

bool empty(){return _size == 0;}

清空数据:

void clear(){iterator it = begin();while (it != end()){it = erase(it);}}

4 总结

本文我们实现了STL库中重要的list 的模拟实现,其中最重要莫过于迭代器的封装类的书写,这是前所未有的操作(对于我来说,我是第一次使用这种结构)。通过list 的模拟实现也帮我们巩固了类与对象的知识,也强化了指针操作的思路。欢迎大家讨论分析。

Thanks♪(・ω・)ノ谢谢阅读!!!

下一篇文章见!!!

点击全文阅读

郑重声明:

本站所有活动均为互联网所得,如有侵权请联系本站删除处理

我来说两句