目录
一、算法公式讲解二、算法流程三、算法实现代码四、代码结果分析五、K-Means库函数六、K-Means算法时间复杂度觉得有用的,一腚要先点赞后收藏!!!气死人了,40多个收藏0点赞!!
一、算法公式讲解
对于
n代表了x有n维,x上标j表示第j维的特征,下标i表示该向量是第i个样本
簇中心坐标为:(当然,这也是重新计算簇中心坐标的方法!!)
向量 u i = ( u i ( 1 ) , u i ( 2 ) , ⋅ ⋅ ⋅ , u i ( j ) , ⋅ ⋅ ⋅ , u i ( n ) ) u_i=(u_i^{(1)} ,u_i^{(2)}, ···, u_i^{(j)},···,u_i^{(n)}) ui=(ui(1),ui(2),⋅⋅⋅,ui(j),⋅⋅⋅,ui(n)),然后标量
其中一个维度,这里比如说是第2个样本的第1维特征 u 2 1 u_{2}^{1} u21,我就到这个第二个簇里面把这个簇所有点第一特征求和得到sum,然后把总和sum除以这个簇的大小| C 2 C_2{} C2|(这个簇里面点的个数),然后就得到第2簇的簇中心的第1维的特征(坐标)
比如第一簇的簇中心坐标:
属于第一簇的坐标有
则
二、算法流程
K-means算法首先随机分布簇中心,然后计算簇中心并重新分簇为一个周期进行迭代,直到簇稳定为止,
三、算法实现代码
有Kmeans.py和kmeansSamples.txt两个文件,kmeansSamples.txt记录的是所有点的坐标,Kmeans.py描述算法实现
Kmeans.py文件如下
# -*- coding: utf-8 -*-import numpy as npimport matplotlib.pyplot as pltdef L2(vecXi, vecXj): ''' 计算欧氏距离 para vecXi:点坐标,向量 para vecXj:点坐标,向量 retrurn: 两点之间的欧氏距离 ''' return np.sqrt(np.sum(np.power(vecXi - vecXj, 2)))def kMeans(S, k, distMeas=L2): ''' K均值聚类 para S:样本集,多维数组 para k:簇个数 para distMeas:距离度量函数,默认为欧氏距离计算函数 return sampleTag:一维数组,存储样本对应的簇标记 return clusterCents:一维数组,各簇中心 retrun SSE:误差平方和 ''' print('k = ' , k) m = np.shape(S)[0] # 样本总数 sampleTag = np.zeros(m) print('sampleTag.shape=',sampleTag) # 随机产生k个初始簇中心 n = np.shape(S)[1] # 样本向量的特征数 print('n = ' , n) clusterCents = np.mat([[-1.93964824,2.33260803],[7.79822795,6.72621783],[10.64183154,0.20088133]]) #clusterCents = np.mat(np.zeros((k,n))) #for j in range(n): # minJ = min(S[:,j]) # rangeJ = float(max(S[:,j]) - minJ) # clusterCents[:,j] = np.mat(minJ + rangeJ * np.random.rand(k,1)) sampleTagChanged = True SSE = 0.0 while sampleTagChanged: # 如果没有点发生分配结果改变,则结束 sampleTagChanged = False SSE = 0.0 # 计算每个样本点到各簇中心的距离 # m是样本总数 for i in range(m): minD = np.inf minIndex = -1 # k是簇中心个数 for j in range(k): # S样本集,clusterCents样本中心点 d = distMeas(clusterCents[j,:],S[i,:]) if d < minD: minD = d minIndex = j if sampleTag[i] != minIndex: sampleTagChanged = True sampleTag[i] = minIndex SSE += minD**2 print(clusterCents) plt.scatter(clusterCents[:,0].tolist(),clusterCents[:,1].tolist(),c='r',marker='^',linewidths=7) plt.scatter(S[:,0],S[:,1],c=sampleTag,linewidths=np.power(sampleTag+0.5, 2)) plt.show() print(SSE) # 重新计算簇中心 for i in range(k): ClustI = S[np.nonzero(sampleTag[:]==i)[0]] clusterCents[i,:] = np.mean(ClustI, axis=0) return clusterCents, sampleTag, SSEif __name__=='__main__': samples = np.loadtxt("kmeansSamples.txt") clusterCents, sampleTag, SSE = kMeans(samples, 3) #plt.scatter(clusterCents[:,0].tolist(),clusterCents[:,1].tolist(),c='r',marker='^') #plt.scatter(samples[:,0],samples[:,1],c=sampleTag,linewidths=np.power(sampleTag+0.5, 2)) plt.show() print(clusterCents) print(SSE)
kmeansSamples.txt文件如下
8.764743691132109049e+00 1.497536962729086341e+014.545778445909218313e+00 7.394332431706460262e+005.661841772908352333e+00 1.045327224311696668e+016.020055532521467967e+00 1.860759073162559929e+011.256729723000295529e+01 5.506569916803323750e+004.186942275051188211e+00 1.402615035721461290e+015.726706075832996845e+00 8.375613974148174989e+004.099899279500291094e+00 1.444273323355928795e+012.257178930021525254e+00 1.977895587652345855e+004.669135451288612515e+00 7.717803834787531070e-018.121947597697801058e+00 7.976212807755792555e-017.972277764807800260e-02 -1.938666197338206221e+008.370047062442882435e+00 1.077781799178707622e+016.680973199869320922e+00 1.553118858170866545e+015.991946943553537963e+00 1.657732863976965021e+015.641990155271871643e+00 1.554671013661827672e+01-2.925147643580102041e+00 1.108844569740028163e+014.996949605297930752e+00 1.986732057663068707e+003.866584099986317025e+00 -1.752825909916766900e+002.626427441224858939e+00 2.208897582166075324e+015.656225833870900388e+00 1.477736974879376675e+01-3.388227926726261607e-01 5.569311423852095544e+001.093574481611491223e+01 1.124487205516641275e+014.650235760178413003e+00 1.278869502885029341e+018.498485127403823114e+00 9.787697108749913610e+007.530467091751554598e+00 8.502325665434069535e+006.171183705302398792e+00 2.174394049079376856e+01-9.333949569013078040e-01 1.594142490265068712e+00-6.377004909329702542e+00 3.463894089865578341e+007.135980906743346175e+00 1.417794597480970609e+01
四、代码结果分析
第一次迭代,簇中心分布不太合理(红色三角形代表簇中心)
第二次迭代,簇中心重新计算,因此簇中心分布比第一次更合理
第3次迭代
第四次迭代
五、K-Means库函数
KMeans(n_clusters=8, *, init=‘k-means++’, n_init=‘k-means++’, n_init=10,max_iter=300, tol=0.0001, verbose=0, random_state=None, copy_x=True, algorithm=‘auto’)
链接🔗:👉Sklearn关于K-Means的API介绍
相关输人参数和返回值,在网站上有详细介绍,建议 直接看原版文档,这里仅介绍几个重要参数,其他内容不再赘述。
六、K-Means算法时间复杂度
设样本总数为 m,分簇数为k。一次迭代过程中,以样本与簇中心的距离计算为基本运算,需要 m × k m \times k m×k。如果迭代次数为t(,则算法的时间复杂度是 O( m × k × t m \times k \times t m×k×t)。
算法运行不需要增长额外辅助空问,以样本和簇中心存储空间为基本空间,空间复杂度是0( m + k m+k m+k)。
由于m,k,t可认为是常量,因此算法的时间复杂度和空间复杂度都可认为是线性的 O ( N ) O(N) O(N) .